
How to get rid of Dirac worldsheets in the Cho–Faddeev–Niemi representation of SU(2)

Yang–Mills theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 015401

(http://iopscience.iop.org/1751-8121/43/1/015401)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:40

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/1
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 015401 (18pp) doi:10.1088/1751-8113/43/1/015401

How to get rid of Dirac worldsheets in the
Cho–Faddeev–Niemi representation of SU (2)
Yang–Mills theory

A L L de Lemos, M Moriconi and L E Oxman

Instituto de Fı́sica, Universidade Federal Fluminense, Campus da Praia Vermelha, Niterói,
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Abstract
In this paper, we present an exact procedure to deal with Dirac strings or
worldsheets in gauge theories containing ensembles of monopoles interacting
with charged fields. For SU(2) Yang–Mills theory, initially we construct the
appropriate change of variables of the charged fields (including charged ghosts
and auxiliary fields) so that the only change in the integrand of the partition
function, in the maximal Abelian gauge, is the addition of given closed Dirac
worldsheets. Next, we derive our main result, namely we show that it is always
possible to choose them in such a manner that the total (open plus closed)
Dirac worldsheets explicitly decouple from the charged sector, leaving only
the effect of their associated gauge invariant borders (where the monopoles are
placed), without missing any information about the center vortex sector. This
procedure serves as a simplifying basis to deal with ensembles of monopoles
and center vortices in the framework of the Cho–Faddeev–Niemi gauge field
decomposition, by writing the partition function only in terms of the physical
part of the defects to be integrated.

PACS numbers: 11.15.−q, 12.38.Aw

1. Introduction

Every now and then we are faced with field theories containing a charged sector interacting
with monopole-like defects. The most remarkable example is associated with the scenario of
dual superconductivity for confinement in SU(N) Yang–Mills theories [1–7].

In these theories, the charged sector corresponds to the ‘off-diagonal’ modes living in the
Cartan subalgebra of the non-Abelian group, while monopoles arise as defects when defining
Abelian projection gauge-fixing conditions [8]. Monopoles can also be introduced as defects
of the local color frame n̂a , a = 1, 2, 3, to decompose the gauge fields [9–14]. This procedure
has the advantage of not relying on any a priori gauge-fixing condition.
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In both situations, we have to deal with the associated Dirac strings or worldsheets,
depending on whether the monopole defects are point-like or loop-like. Considering that these
objects are not observable (their location can be changed by means of a topologically trivial
gauge transformation), a natural question that arises is about the possibility of representing
physical quantities, such as the partition function, only in terms of their gauge invariant borders
(where monopoles are located).

In this paper, we will present an exact procedure to achieve this goal in compact QED(3)

with charged fields and in the framework of the Cho–Faddeev–Niemi decomposition of pure
SU(2) Yang–Mills theory.

This is particularly relevant in the latter case, when using the gauge field decomposition
to guide the obtention of effective theories associated with ensembles of monopoles and center
vortices (see [15]). In particular, if our procedure were not applied before any approximation
scheme, it would be possible that the effective theories obtained could make no sense
physically, as Dirac worldsheets would become observable because of the approximations.

On the other hand, once we have a partition function representation only in terms of
the monopole locations, assuming a phase where monopoles condense, we can reobtain the
effective model of [9], proposed by following physical heuristic arguments to deal with the
Dirac worldsheets.

Another closely related example occurs in [16, 17], where the effective Skyrme model
[10, 14, 18] has been discussed in the Cho–Faddeev–Niemi framework, by following heuristic
arguments assuming a magnetic condensate, and by implementing a series of approximations
to compute the one-loop effective action in a monopole background.

In fact, in these references the singular terms where the worldsheets are concentrated
are missing (see the discussion in [15]). Of course, any heuristic reasoning only deals with
physical objects and the effective theory must be directly constructed in terms of them. Then,
the effective models have been constructed in terms of the third component n̂ = n̂3 of the local
color frame, as monopoles can be seen as defects of this component, with no reference to any
Dirac worldsheet.

The main point is that, as discussed in [15], when monopole defects are present for
n̂, necessarily the components n̂1, n̂2 must also contain defects, and therefore we have two
possibilities: Firstly, we could have Dirac worldsheet defects where the components n̂1, n̂2

rotate twice, as we go close and around them. This corresponds to a magnetic flux 4π/g

carried by the Dirac worldsheet, matching the magnetic flux 4π/g emanating from monopoles
in non-Abelian theories. Secondly, it is also possible to attach monopoles with a pair of center
vortices carrying flux 2π/g, which are also given by defects in the components n̂1, n̂2; in this
case, when we go around the vortex they rotate once.

Therefore, when looking for effective models written only in terms of n̂, if on the one
hand no information about unphysical Dirac worldsheets is introduced, on the other, we
miss information about the n̂1, n̂2 sector, which contains physical information about center
vortex ensembles. For this reason, it is important to have a careful discussion about how to
get rid of Dirac worldsheets in the Cho–Faddeev–Niemi decomposition framework, and to
understand why this procedure fails to get rid of center vortices, so that they can be associated
with interesting phases displaying confinement, N-ality [19–23] or Abelian dominance [15].
Moreover, the interest in looking for possible extensions to the Skyrme effective model is also
supported by recent limitations of this model observed in the lattice [24].

Technically, the above question about the possibility of representing the partition function
with no reference to Dirac strings or worldsheets is a nontrivial one, as in a field theory problem
the charge current is distributed on the whole Euclidean spacetime. This is in contrast with the
problem of representing the path integral for the propagation of a one-particle system, where
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the relevant electric current is concentrated on the integration path and the Dirac string does
not appear, as long as the Dirac quantization condition is imposed.

Initially, we will perform a change of variables with trivial Jacobian that only introduces
given closed Dirac strings or worldsheets in the partition function. In compact QED(3) and
SU(2) Yang–Mills theory, this will be possible by working in the Lorentz and the maximal
Abelian gauges, respectively, and considering a gauge transformation with multivalued phase
χ , satisfying the Laplace equation ∂μ∂μχ = 0. The explicit form of this transformation
is obtained by means of the expressions obtained in [25, 26] to describe closed thin center
vortices. In this respect, note that, as is well known, the MAG condition, as well as the
Landau condition, do not fix the gauge completely. In section 5.2, we will discuss this issue
in the context of Gribov ideas for the implementation of a properly defined path integral (see
[27, 28] and references therein).

Next, we will show that it is always possible to choose the closed Dirac strings or
worldsheets, in such a way that the total effect is the decoupling of open plus closed Dirac
defects from the charged sector, in the integrand of the partition function, leaving only the
effect of their associated gauge invariant borders, where the physical monopoles are placed.

This paper is organized as follows. In section 2, we review monopoles in compact
QED(3) with charged matter and the Cho–Faddeev–Niemi scenario for SU(2) Yang–Mills
theory. Section 3 is devoted to discuss the associated partition functions in minimal coupling
form and to define the gauge-fixing conditions. In section 4, we separate, by means of a
Hodge decomposition, the terms coupling the Dirac strings or worldsheets to the charged
sector from those coupling their borders, where the physical monopoles are placed. In
section 5, we carefully discuss the Dirac string or worldsheet independence of the partition
functions, and show the central result of this work, namely how to get rid of Dirac defects by
decoupling them from the charged sector. Finally, in section 6 we present our conclusions and
discuss exactly where our procedure fails to get rid of physical center vortices.

2. Charged fields and monopole-like defects

2.1. Compact QED(3)

As shown in [29], pure compact QED(3) is a confining model. Here, we consider its coupling
to a charged matter sector. In this case, the action1 for an instanton/anti-instanton pair is given
by

S =
∫

d3x

(
D̄μ�̄Dμ� +

1

2
(fμ + hμ)2

)
, (1)

where

Dμ = ∂μ − iq(Aμ + Cμ), fμ = εμνρ∂νAρ. (2)

The field hμ added to the dual field strength tensor fμ in the action (1) is such that

∂μhμ = gm[δ(3)(x − x+) − δ(3)(x − x−)], (3)

and the vector potential Cμ, satisfying hμ = εμνρ∂νCρ , can be introduced only outside a region
containing a Dirac string xs(σ ), σ ∈ [0, 1], running from x− to x+,

xs(0) = x−, xs(1) = x+. (4)

1 Throughout this paper we work in Euclidean spacetime.
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In order to extend the vector potential to the whole space R3, hμ and εμνρ∂νCρ must differ by
a singular term dμ

hμ = εμνρ∂νCρ + dμ, dμ = gm

∫
[xs ]

dyμδ(3)(x − y). (5)

This implies that the flux of dμ through a surface crossed by the Dirac string is ±gm .
The independence of physical quantities on the choice of Cμ must also include the

independence on the possible associated Dirac strings. As is well known, this nonobservability
implies the famous Dirac charge quantization condition

q = ne, e = 2π/gm, (6)

where n is an integer.

2.2. SU(2) Yang–Mills and the Cho–Faddeev–Niemi decomposition

In SU(2) Yang-Mills theory in four dimensions the action is given by

SYM = 1

2

∫
d4x tr(FμνFμν), Fμν = Fa

μνT
a. (7)

The generators can be realized as T a = τ a/2, a = 1, 2, 3, where τ a are the Pauli matrices,
and the field strength tensor is written in terms of the gauge fields Aa

μ, a = 1, 2, 3,

�Fμν = ∂μ
�Aν − ∂ν

�Aμ + g �Aμ × �Aν, �Aμ = Aa
μêa, �Fμν = Fa

μνêa, (8)

where êa is the canonical basis in color space.
The Cho–Faddeev–Niemi decomposition [9, 10] is done in terms of a general local frame

in color space, n̂a , a = 1, 2, 3, which can be parametrized by means of an orthogonal local
transformation R ∈ SO(3):

n̂a = Rêa. (9)

This frame can be used to represent the gauge field �Aμ as

�Aμ = Aμn̂ − 1

g
n̂ × ∂μn̂ + �Xμ, n̂ · �Xμ = 0, (10)

n̂a · n̂b = δab, a, b = 1, 2, 3, n̂ ≡ n̂3, (11)

where �Xμ transforms in the adjoint representation.
The field strength tensor, for the decomposition (10) defined in the whole Euclidean

spacetime, is given by

�Fμν = (Fμν + Hμν + Kμν)n̂ + �Gμν + �Lμν, (12)

Fμν = ∂μAν − ∂νAμ, Hμν = − 1

g
n̂ · (∂μn̂ × ∂νn̂), (13)

Kμν = −ig(�̄μ�ν − �μ�̄ν), �Gμν = G1
μνn̂1 + G2

μνn̂2, (14)

with

�μ = 1√
2

(
X1

μ + iX2
μ

)
, Gμν = 1√

2

(
G1

μν + iG2
μν

)
, (15)

Gμν = [
∂μ + ig

(
Aμ + C(n)

μ

)]
�ν − [

∂ν + ig
(
Aν + C(n)

ν

)]
�μ, (16)
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and the monopole vector potential is given by

C(n)
μ = − 1

g
n̂1 · ∂μn̂2. (17)

Finally, �Lμν = −(1/g)n̂ × [∂μ, ∂ν]n̂ is a term concentrated on the defects of the color
direction n̂ (see [15]). In addition, while in [11–13], Hμν is computed to be ∂μCν − ∂νCμ,
obtaining simpler ‘abelianized’ expressions for the field strength tensor, when dealing with
gauge fields containing defects this relationship must be revised. In fact, when defined on the
whole Euclidean spacetime, both quantities differ by singular terms [15]

Hμν = ∂μC(n)
ν − ∂νC

(n)
μ + Dμν, Dμν = 1

g
n̂1 · [∂μ, ∂ν]n̂2. (18)

To study magnetic defects, it will also be convenient to consider the associated dual expressions,
defining the dual tensors using lowercase letters. For instance, the dual form of the first equation
in (18) reads

hμν = εμνρσ ∂ρC
(n)
σ + dμν, hμν = 1

2εμνρσHρσ , dμν = 1
2εμνρσDρσ . (19)

The monopole configurations are obtained from nontrivial n̂ mappings [9, 11–14]

gm =
∮

dsih0i = ±4π

g
, (20)

where the integral is on a surface enclosing a monopole (resp. anti-monopole). The factor of
2, with respect to the magnetic charge of a Dirac monopole, is associated with the non-Abelian
nature of the fields.

For mappings like these, the term �Lμν must vanish since n̂ does not contain defects
localized on two-dimensional worldsheets. On the other hand, the local directions n̂1, n̂2 will
be necessarily singular on two-dimensional worldsheets, and therefore they give a nontrivial
contribution to dμν of the form

dμν = 4π

g

∫
dσ1dσ2

(
∂xμ

w

∂σ1

∂xν
w

∂σ2
− ∂xμ

w

∂σ2

∂xν
w

∂σ1

)
δ(4)(x − xw(σ1, σ2))

= 4π

g

∫
d2σμνδ

(4)(x − xw(σ1, σ2)), (21)

where xw(σ1, σ2) is the Dirac worldsheet.
It will be useful to know that for a monopole/anti-monopole pair localized on the loops

C+ and C−, we have

∂νdμν = 4π

g

(∮
C+

dyμδ(4)(x − y) −
∮
C−

dyμδ(4)(x − y)

)
. (22)

3. Partition functions

3.1. Compact QED(3)

The partition function of compact QED(3) with an instanton/anti-instanton pair is

Z =
∫

[DA][D�][D�̄]Fgf e−S. (23)

For example, we can consider the gauge fixing condition

∂μ(Aμ + Cμ) = 0 (24)
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introducing a Lagrange multiplier β, which corresponds to the measure

Fgf = [Dβ] exp

(
i
∫

d3xβ∂μ(Aμ + Cμ)

)
. (25)

In order to single out the terms that depend explicitly on the Dirac string, we linearize the
coupling with Cμ by introducing the auxiliary fields μ, ̄μ and λμ:

S =
∫

d3x

(
1

2
λ2

μ + ̄μμ − i

2
(̄μDμ� + D̄μ�̄μ) − iλμ(fμ + hμ)

)
. (26)

The partition function becomes

Z =
∫

[D�][Dβ] exp

(
−Sc −

∫
d3x

1

2
λ2

μ + i
∫

d3x(λμ(fμ + hμ)

− Jμ(Aμ + Cμ) + β∂μ(Aμ + Cμ))

)
, (27)

where [D�] is the measure over all fields, physical and auxiliary, while

Sc =
∫

d3x
(
̄μμ − i

2
(̄μ∂μ� + μ∂μ�̄)

)
, (28)

Jμ = iq

2
(̄μ� − �̄μ). (29)

We also note that a constraint is implicit in equation (27), because of the Aμ path integral

εμνρ∂νλρ = J c
μ, J c

μ = Jμ + ∂μβ, (30)

which implies

β = − 1

∂2
∂μJμ. (31)

That is,

Z =
∫

[D�][Dβ] exp

(
−Sc −

∫
d3x

1

2
λ2

μ + i
∫

d3x
[
Aμ

(
εμνρ∂νλρ − J c

μ

)
+ λμdμ

])
, (32)

where we used ∫
d3x(λμhμ − JμCμ + β∂μCμ) =

∫
d3xλμ(hμ − εμνρ∂νCρ). (33)

3.2. SU(N) Yang–Mills in four dimensions

The Yang–Mills action on the monopole background is

SYM =
∫

d4x

[
1

4
(fμν + hμν + kμν)

2 +
1

2
ḡμνgμν

]
, (34)

where

gμν = 1

2
εμνρσGρσ = εμνρσ

[
∂ρ + ig

(
Aρ + C(n)

ρ

)]
�σ , etc. (35)

Introducing real and complex auxiliary fields λμν and μν , we obtain

SYM = Sc +
∫

d4x

[
1

4
λμνλμν − i

2
λμν(fμν + hμν + kμν) + iJμ

(
Aμ + C(n)

μ

)]
,

Sc =
∫

d4x

[
1

2
̄μνμν − i

2
(̄μνεμνρσ ∂ρ�σ + μνεμνρσ ∂ρ�̄σ )

]
, (36)

that is, the Yang–Mills action with
(
Aμ + C(n)

μ

)
minimally coupled to the current for charged

fields

Jμ = − i

2
gεμνρσ ̄νρ�σ +

i

2
gεμνρσνρ�̄σ . (37)

6
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3.3. Gauge fixing

As gauge fixing, we will adopt the maximal Abelian gauge (see [30] and references therein).
For its extension in the context of the Cho–Faddeev–Niemi decomposition, see [31]. Then,
for the charged modes we consider

D̂μ
�X(n)

μ = 0, D̂μ
�X(n)

ν = ∂μ
�X(n)

ν + gÂμ × �X(n)
ν , (38)

Âμ = Aμn̂ − 1

g
n̂ × ∂μn̂, (39)

while for the diagonal fields, we have

∂μ

(
Aμ + C(n)

μ

) = 0. (40)

These conditions can be imposed by means of Lagrange multipliers �b = b1n̂1 + b2n̂2 and β,
respectively.

The condition for the charged modes can be rewritten as

Dμ�μ = 0, D̄μ�̄μ = 0, Dμ = [
∂μ + ig

(
Aμ + C(n)

μ

)]
, (41)

so that equations (40) and (41) can be implemented by including a factor

exp

(
i
∫

M

d4x
[
β∂μ

(
Aμ + C(n)

μ

)
+ b̄Dμ�μ + bD̄μ�̄μ

])
, b = 1√

2
(b1 + ib2). (42)

We will also have a Faddeev–Popov determinant, exponentiated by means of the associated
ghost fields �c = c1n̂1 + c2n̂2. The action for the ghosts contains a term quadratic in D̂μ, which
can be linearized by considering additional auxiliary fields �aμ = a

μ

1 n̂1 + a
μ

2 n̂2. Here, we can
also define charged fields

c = 1√
2
(c1 + ic2), aμ = 1√

2

(
a1

μ + ia2
μ

)
(43)

and introduce a factor whose exponent contains Dμ derivatives linearly (see [15, 31]).
The final form for the integration measure fixing the above-mentioned gauge conditions

depends on the combination Aμ + C(n)
μ and can be written as

Fgf = F̃gf exp

(
−i

∫
d4x

(
Aμ + C(n)

μ

)
Kμ

)
, (44)

Kμ = ∂μβ + K̃μ, (45)

where F̃gf collects all the other factors, independent of Aμ + Cμ, and the integration measure
for ghosts and auxiliary fields. The part of the current K̃μ depends on the charged fields, aμ,
b, c and �μ, and is invariant under U(1) phase transformations of these fields.

In general, for a given gauge field Aa
μ, a = 1, 2, 3, many different local frames n̂a can be

introduced to decompose it. In [32, 33], Cho variables have been incorporated by including, in
the partition function for Yang–Mills theory, an identity written as an integral over local color
directions n̂, satisfying n̂ · n̂ = 1, and then showing that the Jacobian of the transformation

�Aμ, n̂ → Aμ,�μ, �̄μ, n̂

is trivial.
Then, according to the previous discussions, gauge fields with monopole defects are taken

into account by considering local color frames where n̂ contains defects concentrated on loops.
Necessarily, n̂a , a = 1, 2, will be singular on the associated Dirac worldsheets.

7
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Therefore, the Yang–Mills partition function can be represented as (see [15])

ZYM =
∫

[DA][D�][D�̄][Dn̂]Fgf e−SYM

=
∫

[D�]F̃gf exp

(
−Sc −

∫
d4x

1

4
λμνλμν+,

∫
d4x

[
Aμ

(
1

2
εμνρσ ∂νλρσ − J c

μ

)

+
1

2
λμν(dμν + kμν)

])
, (46)

J c
μ = Jμ + Kμ, (47)

where [D�], besides the integration measure for Aμ, �μ, �̄μ and n̂, also integrates over the
auxiliary fields λμν and μν . Again, because of the path integration over the diagonal field
Aμ, we obtain the implicit constraint

J c
μ = 1

2εμνρσ ∂νλρσ . (48)

4. Treatment of Dirac strings and worldsheets

As is well known, in the formalism of first quantization, it is simple to express a physical
quantity, such as the probability density for the propagation of a particle, in such a way that
the Dirac string is no longer apparent. This comes about as in that case the relevant electric
current is concentrated on a closed path formed by the composition of the integration path and
a given reference path, joining the fixed initial and final particle positions; thus given a relative
phase that only depends on the pierced magnetic flux, as long as Dirac quantization condition
is imposed.

On the other hand, in a field theory problem, the possibility of representing physical
quantities in a way that does not refer to a Dirac string or worldsheet is nontrivial, since the
charge current is distributed on the whole Euclidean spacetime.

In order to obtain a similar result for quantum field theories with a charged sector, we
will proceed in three steps. First, we introduce the Hodge decomposition for λμ and λμν so as
to isolate the string or worldsheet-dependent terms from gauge invariant objects such as their
borders, where the monopoles are located. Next, we verify that Dirac strings and worldsheets
can be changed by means of an appropriate change of variables associated with a gauge
transformation. Finally, we show that it is always possible to change to an appropriate set of
Dirac strings or worldsheets such that the partition function only depends on the monopole
positions.

4.1. The Hodge decomposition

In order to isolate the unphysical terms in a physical quantity such as the partition
function, we first note that the Dirac string and worldsheet dependence is contained in (cf
equations (32) and (46))∫

d3xλμdμ,

∫
d4x

1

2
λμνdμν, (49)

for compact QED(3) and SU(2) Yang–Mills, respectively.
In the first case, it will be convenient to consider the following decomposition

λμ = ∂μφ + Bμ, (50)

8
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with

∂μBμ = 0, (51)

and because of equation (30), we also have the implicit constraint

εμνρ∂νBρ = J c
μ. (52)

Therefore, we have∫
d3xλμdμ = gm[(φ(x−) − φ(x+)] +

∫
d3xBμdμ, (53)

∫
d3xBμdμ = gm

∫
[xs ]

dxμBμ. (54)

We should also change the measure appropriately in (32):

[Dλ] → [DB][Dφ]FB
gf , (55)

where FB
gf is the part of the measure fixing the condition ∂μBμ = 0 :

FB
gf = [Dξ ] ei

∫
d4xξ∂μBμ . (56)

Similarly, for SU(2) Yang–Mills in four dimensions, we decompose the auxiliary field
λμν in the following way:

λμν = ∂μφν − ∂νφμ + Bμν, (57)

∂μφμ = 0, ∂νBμν = 0, (58)

with the implicit constraint
1
2εμνρσ ∂νBρσ = J c

μ. (59)

That is,∫
d4x

1

2
λμνdμν = 4π

g

(∮
C+

dyμφμ −
∮
C−

dyμφμ

)
+

∫
d4x

1

2
Bμνdμν, (60)

∫
d4x

1

2
Bμνdμν = 4π

g

∫
[xw]

d2σμνBμν. (61)

The first term in equation (60) depends on the (gauge invariant) monopole locations, while the
Dirac string and worldsheet have been isolated in the second term.

5. Getting rid of Dirac strings and worldsheets

5.1. Compact QED(3)

In compact QED(3), let us consider the change of variables

�′ = eiqχ�, A′
μ = Aμ + χμ, (62)

which has a trivial Jacobian. The phase χ is multivalued; when we go along any loop encircling
a closed Dirac string ∂�, given by the border of a surface �, it changes an amount �χ .

In order for eiqχ to be single-valued, we must have

q�χ = 2nπ. (63)

9
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Under this condition, eiqχ is continuous on any �, so that we obtain

∂μeiqχ = iq eiqχχμ, (64)

where χμ is locally given by ∂μχ , containing no δ-distribution localized on �.
Now, under the change in equation (62), the transformed action is

S ′ =
∫

d3x

(
D̄μ�̄Dμ� +

1

2
(fμ + h′

μ)2

)
, (65)

h′
μ = hμ + εμνρ∂νχρ. (66)

As ∂μh′
μ = ∂μhμ, no new monopoles are introduced in this process. The second term in

equation (66) only represents a flux concentrated on the closed Dirac string ∂�

±gm =
∫

dSμεμνρ∂νχρ =
∮

l

dxμχμ = �χ, (67)

where the first integral is done over a surface which is crossed by ∂�, so that its border is
a loop l encircling ∂�. In particular, this transformation can be used to change the string
attached to monopoles from dμ to d ′

μ, by choosing

εμνρ∂νχρ = d ′
μ − dμ. (68)

Of course, considering equation (63) and the multivaluedness of χ in equation (67), Dirac’s
quantization condition (6) is obtained.

At the quantum level, in the representation of Z (cf equation (32)), we have also introduced
a charged field μ. Performing the change of variables given in equation (62), together with

′
μ = eiqχμ, (69)

we obtain

Z =
∫

[D�][Dβ] exp

(
−Sc + i

∫
d3xχμJμ −

∫
d3x

1

2
λ2

μ

+ i
∫

d3x
[
(Aμ + χμ)

(
εμνρ∂νλρ − J c

μ

)
+ λμdμ

])
. (70)

Now, according to equation (30), the only difference between Jμ and J c
μ is ∂μβ. Therefore,

we can replace Jμ → J c
μ in the exponent of equation (70), since the difference is∫

d3x χμ∂μβ = −
∫

d3xβ∂μχμ, (71)

which can be nullified by means of a multivalued phase such that

∂μχμ = ∂μ∂μχ = 0. (72)

The possibility of such a choice will be discussed in the next subsection.
That is, we obtain

Z =
∫

[D�][Dβ] exp

(
−Sc −

∫
d3x

1

2
λ2

μ + i
∫

d3x[(Aμ + χμ)εμνρ∂νλρ + λμdμ]

)
. (73)

Finally, integrating by parts the term containing χμεμνρ∂νλρ and recalling equation (68), we
obtain the partition function in (32) where dμ is replaced by d ′

μ, thus showing the independence
of Z on the Dirac string choice.

10
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5.2. Yang–Mills

In SU(2) Yang–Mills, let us consider a gauge transformation of the gauge field �Aμ given in
equation (10), decomposed in terms of a general frame n̂a:

�AS
μ · �T = S �Aμ · �T S−1 +

i

g
S∂μS−1, (74)

which has a trivial Jacobian.
As we have seen in [15], in terms of the Cho–Faddeev–Niemi variables, the gauge

transformed field is

�AS
μ = A′

μn̂′ − 1

g
n̂′ × ∂μn̂′ + X1

μn̂′
1 + X2

μn̂′
2, (75)

A′
μ = Aμ + C(n)

μ − C(n′)
μ , n̂′

a = R(S)n̂a, (76)

where C(n′)
μ is computed with the transformed basis.

In particular, we can consider a singular gauge transformation S along the direction n̂,
living in the trivial topological sector of SU(2), representing a frame rotation with phase χ .
This phase is multivalued when we go along a loop l linking the closed Dirac worldsheet ∂�

to be introduced, given as the border of a three-volume �. In this case, as n̂′ = n̂, we still
have vanishing �L′

μν (cf equation (12)).
For gauge transformations representing a rotation along the n̂-axis, that rotates the basis

elements n̂1, n̂2 by an angle χ , C(n)
μ − C(n′)

μ turns out to be χμ, with χμ locally given by
∂μχ . Similarly to what happens in the compact QED(3) case, χμ cannot contain singularities
(a δ-distribution) on any three-volume �. This comes about as C(n)

μ and C(n′)
μ depend on

derivatives of the local color frame (cf equation (17)), which is single valued along any loop l.
The second transformation in equation (76) can be equivalently translated to a phase

change χ of the charged sector, which in the partition function representation of equation (46)
includes not only the fields �μ, �̄μ but also the fields μ, ̄μ, the charged ghosts, charged
Lagrange multipliers and charged auxiliary fields in the gauge-fixing measure given in
equation (44).

Then, the effect of this transformation on the Yang–Mills action is (see [15])

S ′
YM =

∫
d4x

[
1

4
(fμν + h′

μν + kμν)
2 +

1

2
ḡμνgμν

]
, (77)

h′
μν = hμν + εμνρσ ∂ρχσ , (78)

where the second term is localized on ∂�. In particular, to change the Dirac worldsheet
attached to monopoles, we should consider

εμνρσ ∂ρχσ = d ′
μν − dμν, (79)

representing a trivial flux 4π/g, concentrated on the composition of the initial and final
worldsheets.

Then, after performing the change of variables (76), we get

ZYM =
∫

[DA][D�][D�̄][Dn̂]Fgf e−SYM

=
∫

[D�]F̃gf exp

(
−Sc + i

∫
d3xχμ(Jμ + K̃μ)

)

× exp

(
−

∫
d4x

1

4
λμνλμν + i

∫
d4x

[
(Aμ + χμ)

(
1

2
εμνρσ ∂νλρσ − J c

μ

)

+
1

2
λμν(dμν + kμν)

])
. (80)

11
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Again, with the choice ∂μχμ = ∂μ∂μχ = 0, we can replace Jμ + K̃μ → Jμ + K̃μ + ∂μβ =
Jμ +Kμ = J c

μ, and similarly to the QED(3) case, we obtain the partition function in (46) where
dμν is replaced by d ′

μν , thus showing the independence of ZYM with respect to the change of
Dirac worldsheet joining the instanton/anti-instanton defects.

In order to have an explicit form for χμ, we note that it can be associated with a pair of
closed center vortices placed at ∂�. As χμ does not contain any δ-distribution localized on
�, we can use the results given in [25, 26] for closed thin center vortices, taking into account
the appropriate factors

χμ = −gm

∫
�

dD−1σ̃ν(δμν∂
2 − ∂μ∂ν)D(x − x̄(σ )), (81)

where the (minimum) magnetic charge gm is given by 2π/e or 4π/g, in the Abelian or non-
Abelian case, respectively, and x̄(σ ) is a parametrization of �, a surface or a three-volume in
D = 3, 4, respectively. The integration measure is

dD−1σ̃μ = 1

(D − 1)!
εμα1...αD−1 dD−1σα1...αD−1 , (82)

dD−1σα1...αD−1 = εk1...kD−1

∂x̄α1

∂σk1

. . .
∂x̄αD−1

∂σkD−1

dσ1 . . . dσD−1 (83)

and D(x) is the Green function for the Laplacian operator.
As shown in [25, 26], using Stokes’ theorem, χμ can be written only in terms of ∂� which

corresponds to the manifold where the closed Dirac defects are placed (∂∂� = 0):

χμ = 4π

g

∫
∂�

dD−2σ̃μκ∂
x
κ D(x − x̄(σ )). (84)

For instance, in three dimensions, if a Dirac string along the z-axis is considered, we obtain
χ0 = 0, χi = −(2/g)εij ∂j ln ρ, which contains no singularity on any plane whose border is
the z-axis, and can be locally written as, χμ = (2/g)∂μϕ, where ϕ is the multivalued polar
angle, in accordance with our previous discussion. Note also that in general, because of the
index structure in equation (81), we have ∂μχμ = 0.

Finally, it is interesting to discuss the change of variables we have performed here, after
the implementation of the MAG gauge-fixing condition, in the light of Gribov ideas. In this
respect, we would like to underline that there is an important research program based on the
implementation of a properly defined path integral, so as to avoid the so-called Gribov copies
(see [27, 28] and references therein). The path integral restriction is usually done by the
inclusion of a Gribov–Zwanzinger term to the Yang–Mills action. In fact, this procedure only
erases copies connected to each other by infinitesimal gauge transformations, so that even
after it is applied, there is still room for large copies living in the trivial topological sector
of the theory [28, 34]. These are precisely associated with the change of variables we have
performed here, which is along a gauge transformation that lives in the trivial topological
sector, as it includes a frame defect such that n̂1, n̂2 rotate twice when we go around the
closed Dirac worldsheet. Moreover, as shown in [28], in the case of the MAG, the Gribov
region in SU(2) Euclidean Yang–Mills theories can be seen as a cylinder, bounded in all
off-diagonal directions, and unbounded along the diagonal 1. Therefore, our procedure would
also work after the implementation of the Gribov restriction, as it only involves operations on
the diagonal direction, namely the use of the implicit constraint (48), derived from the path
integration over the diagonal field Aμ, and diagonal gauge transformations with multivalued
phase χ .

In other words, the developments in the following section can be seen as a natural way to
fix the freedom associated with large copies when Gribov’s scenario is applied to the MAG.

12
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5.3. Decoupling Dirac strings and worldsheets from the charged sector

Now, it is desirable to express a physical quantity such as the partition function only in terms
of observable properties of the monopoles. In this regard, we will show that the line integral in
equation (54) can always be nullified for a given choice of Dirac strings, that is, by considering
an appropriate change of variables.

As shown in the previous section, when compact QED(3) and SU(2) Yang–Mills theory
are considered in the Lorentz and maximal Abelian gauge, respectively, and a change of
variables associated with a multivalued phase satisfying ∂μχμ = ∂μ∂μχ = 0 is performed, the
only change in the integrand of the partition function is the substitution∫

dDxλd →
∫

dDxλd ′ =
∫

dDxλ(d + ε∂χ), (85)

where we have simplified the notation by defining

λ(d + ε∂χ) =
{
λμ(dμ + εμνρ∂νχρ) or
λμν(dμν + εμνρσ ∂ρχσ ),

(86)

in D = 3, 4 dimensions, respectively. On the other hand, in section 4, we have introduced a
Hodge decomposition of d in terms of the fields φ, Bμ or φμ, Bμν in three and four dimensions,
respectively. As ε∂χ introduces a closed Dirac string or worldsheet, the borders in d ′ are the
same as in d. That is, the terms involving φ and φμ in equations (53) and (60) do not change
after the above-mentioned substitution (they are couplings with the gauge invariant monopole
locations). Therefore, the only change in those equations is in the couplings of the Dirac
defects with the charged sector∫

dDxBd →
∫

dDxB(d + ε∂χ) (87)

(recall that ε∂B represents the charged currents, cf equations (52) and (59)).
As already discussed, in compact QED(3) and SU(2) Yang–Mills theory, because of the

single-valuedness of eiqχ and the local color frame, in the change of variables for Aμ, the
function χμ cannot contain singularities on the surface or three-volume � whose border gives
the Dirac string or worldsheet. This means that χμ can be globally written as

χμ = ∂μ� + Rμ, (88)

where � coincides with a given branch of χ on the Euclidean spacetime minus � and Rμ

is localized on �. When crossing �, � contains a discontinuity, defining a single-valued
function, which jumps back to its initial value when we go around any loop linking the Dirac
defect ∂�. Therefore, the calculation of ∂μ� contains a δ-distribution on �, and Rμ must be
designed to compensate it, giving a nonsingular χμ.

In this regard, it is useful to consider the formula obtained in [25, 26] to separate the
so-called thin and ideal center vortices, namely

−
∫

�

dD−1σ̃μδ(D)(x − x̄(σ )) −
∫

�

dD−1σ̃ν(δμν∂
2 − ∂μ∂ν)D(x − x̄(σ )) = ∂μ�, (89)

where � is the solid angle (normalized to 1) subtended by � when viewed from x. This
solid angle is single valued when we go along any loop linking ∂�. In other words, using
equation (81), we obtain

� = gm�, Rμ = gm

∫
�

dD−1σ̃μδ(D)(x − x̄(σ )). (90)

As � is single valued, we have εμνρ∂ν∂ρ� = 0, εμνρσ ∂ρ∂σ� = 0, that is∫
dDx[ε∂χ ]B =

∫
dDx[ε∂R]B, (91)
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for any well-behaved Bμ(x). For example, in D = 3,∫
d3x[εμνρ∂νχρ]Bμ = gm

∫
d3x

∫
�

d2σ̃ρεμνρ∂ν[δ(3)(x − x̄(σ ))Bμ(x̄(σ ))],

= gm

∫
∂�

dyμBμ(y), (92)

where we used Stokes’ theorem. In this manner, we can explicitly verify that χμ introduces a
closed Dirac string ∂� (cf equations (54) and (87)):∫

[xs ]
dxμBμ →

∫
[x ′

s ]
dxμBμ. (93)

Following a similar procedure in D = 4, from equations (61) and (87), the change of variables
is equivalent to introduce a closed Dirac worldsheet ∂�:∫

[xw]
d2σμνBμν →

∫
[x ′

w]
d2σμνBμν. (94)

Now, in order to show that is is always possible to decouple the Dirac defects from the
charged sector in the integrand of the partition functions, let us first consider a simple situation,
in three-dimensional spacetime, where the charged fields are such that the monopole and the
anti-monopole happen to be placed on a given field line of Bμ. The field Bμ, which satisfies
equations (51) and (52), can be seen as a ‘magnetic’ field generated by the charge current J c

μ,
so that the associated field lines must be closed and oriented. Now, as the monopole and the
anti-monopole are at the endpoints of the Dirac strings, we can consider two strings [xs] and
[x ′

s], contained on the field line, with tangent vectors oriented parallel or anti-parallel to Bμ,
respectively. That is, when we change from dμ to d ′

μ, we have

P =
∫

[xs ]
dxμBμ > 0, N =

∫
[x ′

s ]
dxμBμ < 0. (95)

Then, if the system is defined on R3, we can deform continuously [x ′
s] into [xs], keeping

the endpoints fixed. In this process, the line integral of Bμ will change continuously from a
positive to a negative value, so that an intermediate string must exist such that it is verified:∫

[x0
s ]

dxμBμ = 0. (96)

We will present a general proof. We start by defining

I[x] =
{∫

[xs ] dxμBμ or∫
[xw] d2σμνBμν.

(97)

Let us consider a Dirac string (worldsheet) [x] joining the anti-monopole and the
monopole, placed at x− and x+ (C− and C+). If I[x] is zero, we are done. If not, we can
assume without loss of generality that it gives a positive result. Now, by considering the
above-mentioned change of variables, we will gain a term

I[∂�] =
∫

dDxBε∂χ =
∫

dDxRε∂B

= gm

∫
�

dD−1σ̃μ[ε∂B]μ. (98)

If ε∂B ≡ 0 on the whole Euclidean spacetime, this together with the defining property of B,
(∂μBμ = 0, ∂νBμν = 0) in equations (51) and (58), would imply B identically zero, and the
term containing the Dirac string would be trivially zero. Therefore, we can suppose that a
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region of spacetime exists such that ε∂B is nonzero. In this case, in order to have a nonzero
I[∂�], it is sufficient to consider � as a small disk or three-volume placed on that region with
dD−1σ̃μ oriented along the local direction of [ε∂B]μ. Of course, if necessary, we can use −χ

instead of χ so as to render,

I[∂�] < 0. (99)

The important point is that the phase nχ , with n a natural number, also defines a possible
singular gauge transformation, as it also leads to a single valued transformation of the charged
fields along any closed loop. Therefore, for the associated change of variables, we have

I[x ′] = I[x] + nI[∂�], (100)

which can be rendered negative for a large enough value of n. Again, [x ′] can be continuously
deformed into [x], by shrinking [∂�] to zero, and in this process an intermediate string or
worldsheet [x0] must exist such that I[x0] = 0 is verified.

Summarizing, in this section we have shown that it is always possible to make a change
of variables with trivial Jacobian, not altering the initial gauge-fixing condition, such that
the Dirac strings or worldsheets are decoupled from the charged sector of the theory. For
instance, in the Cho–Faddeev–Niemi decomposition of SU(2) Yang–Mills theory, this leads
to a representation of the partition function where the only effect of Dirac strings is given by
the coupling of the gauge invariant associated borders (monopoles) and the dual field φμ (see
equation (60)): ∫

d4x
1

2
λμνdμν → 4π

g

(∮
C+

dyμφμ −
∮
C−

dyμφμ

)
. (101)

Of course, this procedure simplifies the study of effective monopole ensembles, as discussed in
[15]. Once the Dirac worldsheets become decoupled, the ensemble integration over the string-
like monopoles can be represented by means of a second quantized complex field ψ , coupled to
the gauge field φμ (see [35–40] and references therein). In this language, contact interactions
between the string-like monopoles generate a quartic term λ(ψ̄ψ)2 which stabilize the system
in a phase with spontaneous symmetry breaking, if the correlation between monopoles and
the gluon fields generate an effective negative mass term −m2ψ̄ψ . In the context of the
Cho–Faddeev–Niemi decomposition, this effective theory, representing the condensation of
monopole degrees of freedom, has been derived in [9] relying on a heuristic treatment of the
Dirac worldsheets.

6. Conclusions

Dirac strings and worldsheets are unobservable objects; however, the presence of a charged
sector, which in the case of SU(2) Yang–Mills theory is associated with the off-diagonal
modes, implies that these unphysical objects appear in the integrand of the partition function
representation.

If on the one hand Dirac strings and worldsheets can be changed at will, it would be
desirable to have a representation of the partition functions where they are eliminated in favor
of their gauge invariant borders, where the monopoles are located.

This is particularly relevant when using the Cho–Fadeev–Niemi gauge field decomposition
to guide the obtention of effective theories associated with ensembles of defects. As Dirac
worldsheets and center vortices are described as defects of the components n̂1, n̂2 of the
local color frame, it is important to have a careful discussion about how to eliminate Dirac
worldsheets and to understand why this procedure cannot be applied to eliminate center
vortices. In this respect, note that in effective models constructed only in terms of n̂ = n̂3, on
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the one hand no information about unphysical Dirac worldsheets is introduced, on the other,
the information about the n̂1, n̂2 vortex sector is lost.

In this work, we have seen that Dirac strings in compact QED(3) and Dirac worldsheets
in the Cho–Faddeev–Niemi representation of SU(2) Yang–Mills theory, in the maximal
Abelian gauge, can be handled in a similar manner. In particular, the realization of gauge
transformations in terms of the Cho–Faddeev–Niemi variables shows that the consideration
of a multivalued phase χ , ∂μ∂μχ = 0, has the only effect of including in the integrand of the
gauge-fixed partition function, a term containing a closed Dirac defect.

In general, by introducing auxiliary fields Bμ, Bμν (representing the charged current
J c

μ) and φ, φμ, for D = 3, 4, respectively, we have been able to isolate the (B-dependent)
terms where Dirac strings and worldsheets are coupled from those (φ-dependent) where the
associated borders (gauge invariant monopole locations) are coupled.

Then, we have presented the main result of this work, namely a procedure showing that
it is always possible to choose Dirac strings and worldsheets in such a manner that the B-
dependent terms vanish. This can be seen as a natural way to fix the remaining freedom,
associated with large copies, after the introduction of a Gribov–Zwanzinger term to erase
copies connected to each other by infinitesimal gauge transformations. Note that, in the MAG,
the Gribov region is a cylinder, bounded in all off-diagonal directions, and unbounded along
the diagonal 1. Therefore, our procedure also works after the implementation of the Gribov
restriction, as it only involves operations on the diagonal direction.

This procedure is especially useful as we are generally interested in studying ensembles
of monopoles, so that it is important to write the theory in a form only depending on physical
properties of the ensembles to be integrated. In particular, in the Cho–Faddeev–Niemi
decomposition of SU(2) Yang–Mills theory, the ensemble integration, assuming a phase
where monopoles condense, is easily related with an effective model for φμ and a complex
field ψ displaying spontaneous symmetry breaking. This model has been obtained in [9],
by following physical heuristic arguments to deal with the Dirac worldsheets, which can be
justified by the exact treatment we have presented here to decouple them from the charged
sector.

In the presence of a sector of closed center vortices, the dμν tensor simply gains a term
concentrated on the closed thin center vortices [15]. While for the percolating case, in
the lattice, closed center vortices display a confining phase exhibiting N-ality (see [22] and
references therein), in the nonpercolating situation they could be associated with Abelian
dominance [15].

It is also possible to attach monopoles with a pair of open center vortices carrying
flux 2π/g. In the nonpercolating case, center vortex chains would tend to erase magnetic
monopoles, forming magnetic dipoles and a nonconfining phase, as occurs in compact QED(3)

coupled to massless fermions, where dipoles are formed because of the existence of quasi-
zero modes [41]. On the other hand, from lattice studies [42–44], the percolating case is a
promising phase, possibly displaying not only confinement but also the observed dependence
of the confining string tension on the group representation.

In this regard, it could be argued that the argument in section 5 can also be used to get rid
of open or closed center vortices, as they would appear in equation (85) parametrized by dμν

(see [15]), and an appropriate unobservable closed Dirac worldsheet could be introduced to
compensate the center vortex contribution.

However, while for fixed monopole positions it is possible to change the Dirac worldsheet
by performing a (singular) topologically trivial SU(2) gauge transformation, for center vortices
it is not [15, 25, 26], so that the latter are expected to be physical objects. From the perspective
provided by our procedure, this means that a nontrivial correlation between center vortices
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and charged fields must be generated. This would imply a nontrivial Jacobian for the phase
tansformation of the charged fields, precluding the elimination of center vortices by a simple
extension of the procedure derived for open Dirac worldsheets. A similar situation applies to
the kμν-dependent term in equation (80) (containing non-Abelian information): of course, it
cannot be eliminated as kμν depends on the charged fields and the Jacobian for the necessary
transformation would be nontrivial.

Then, when open or closed physical center vortices are considered, their coupling to
the dual field Bμν cannot be made to vanish. In this case, the analysis of the possible phases
becomes highly nontrivial, as it involves ensembles of two-dimensional worldsheets correlated
with charged fields and loop-like monopoles at the borders.
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